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Abstract Optimisation algorithms in Machine Learning play a vital role in proper
convergence during function evaluation to get better results, thereby forming one of
the most important parts of Machine Learning. The AdaGrad family of algorithms,
particularly, is noteworthy for several reasons. Their performance on certain types of
data distributions is yet to be studied for robust adaptation. In this paper, we looked
into the performance of these algorithms when pitted against different types of data
distributions, the effect of cosine annealing on different hyper-parameters, and how
one can improve upon them. We found that cosine annealing, improves the overall
error rate average of the AdaGrad family by a factor of 2.5. These results would
be vastly helpful in noise modeling and removal techniques, primarily in image and
signal processing.

1 Introduction

Modern architectures in deep learning have revolutionized several application areas,
from computer vision to speech recognition. Optimization methods have played an
enormous role in the success of such models and have taken a significant place in
artificial intelligence.

The gradient descent method(and its variants), which is by far the most popular
of them, has several problems in the form of severe dependence on learning rates,
causing issues in some instances, hence calling for better methods. It lays the foun-
dation of an algorithm that adaptively scales the gradient value following the data
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or in correspondence with time. It begs the question, ’why not do both?’. In this
paper, we ponder this question and perform experiments to determine if the simul-
taneous adaption of the learning rate, along with the annealing of hyper-parameters,
improves the performance of such algorithms. Existing algorithms that adaptively
scale learning rates include the AdaGrad family of algorithms, which are noteworthy
for their performance [?]. Coming to the chronological update of hyperparameters,
Cosine Annealing[7] exists, reducing the learning rate’s value over time.

The data distributions we considered are by the Central Limit Theorem [6], which
focuses on commonly occurring data distributions in nature. The algorithms we con-
sidered are AdaGrad [8], RMSProp(root mean square propagation), AdaDelta, and
AMSGrad [10].

Our approach included the creation of specific data distributions, monitoring
the performance of said algorithms, and critical comparison among them. We also
looked into the workings of each algorithm in order to better their performance and
came up with interesting and helpful conclusions. This paper’s main contributions
are:

• This paper proves that simultaneous updation of hyperparameters in different
optimization algorithms for both time and the data itself results in improv-
ing the performance of all considered algorithms, namely AdaGrad, RMSProp,
AdaDelta, and AMSGrad.

This paper is organized as follows. The section 2 describes the related work. We
outline the dataset used and the details of the experiment under section 3. Section
4. The results are presented in section 7 and are discussed in section 7. Section 8 is
where we wrap up our paper and discuss future work.

2 Related Work

Issues fueled the need for better optimization algorithms in the performance of the
gradient descent algorithm (and other related algorithms). The unstable convergence
of gradient descent is excellently summarized in [1]. Several solutions were sug-
gested in the paper, but no concrete details were provided. A much more compre-
hensive study on the derivation and performance of better optimization algorithms
was done by [3], where the AdaGrad family of algorithms is introduced. The fea-
tures of the AdaGrad algorithms are further summarized in [2], where the central
focus is on AdaGrad’s performance in the presence of saddle points. Finally, sug-
gestions were made by [9], where the emphasis was placed on endowing algorithms
with long-term memory of gradients. To test the previously stated hypothesis, our
paper uses the contributions made in optimization methods, data distributions, and
learning rate schedules to effectively determine the simultaneous usage of hyperpa-
rameter updates in coherence with both time and data distribution.
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3 Data Creation and Collection

This section describes the dataset creation process and the rationale for choosing
those data distributions. The Central Limit Theorem [6] states that when a large
sample size has a finite variance, the samples will be normally distributed. Hence,
it seemed logical to consider datasets involving the Gaussian distribution, which is
the most commonly occurring one. We considered data in two dimensions, which
called for multivariate gaussian distributed data. The distribution of Gaussian Data
in two dimensions involves information about the mean values (µ) of the data in
each dimension (which, in our case, is a vector of dimension 2×1) and a variance-
covariance matrix (Σ ) (dimension 2× 2) which has variances (σ2) along its main-
diagonal and covariances ( σ(x,y)) along its counter-diagonal. It gives rise to three
cases of data distributions, each with varying values in the variance-covariance ma-
trix as follows:

i) Σ is arbitrary
ii) σ2 = 2σ(x,y)

iii) Σ = σ2I(σ(x,y) = 0) (where I is an identity matrix of dimension 2x2)

Out of these three cases, we have considered the first two cases. In addition to the
above data, we considered two cases of mixed distributions [4]. The reason for such
a consideration is that most real-life random variables are not derived from a single
distribution but a mixture of distributions. True to its name, a mixed distribution con-
tains a mixture of two or more distributions. Before delving into the cases consid-
ered, let us look into another type of data distribution-the Exponential Distribution
[5]. We have a mixed distribution as, “Exponential + Gaussian (µ1,Σ1) + Gaussian

(µ2,Σ2),” where µ1 = [0, 0]T ,µ2 = [3, 3]T , Σ1 =

[
0.1 0
0 0.1

]
), and Σ2 =

[
5 5
5 5

]
.

The creation of each dataset considered in our study was meticulously designed,
keeping in mind the challenges posed by each distribution. All datasets were created
using the ‘numpy.random’ library in Python. To ensure uniformity across cases
involving different parameter updates, we ensured that all distributions shared a
common seed node. A total of five hundred samples were considered for each case
of the data distribution, and each of those samples was considered a starting point
for each algorithm.

For each of the five hundred data points in each data distribution, four algo-
rithms(as described below) were run for five hundred iterations each, providing am-
ple metrics to measure the error rates of each algorithm.

Hence, for each point in data distribution, we collected the error data at each
of the five hundred iterations for all four algorithms. A circular loss function was
considered for our study to ensure a definite minimum.
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4 Methodology

This section describes the methodology used in this paper.

4.1 AdaGrad Family of Algorithms

The AdaGrad family has several members, of which we decided to monitor the
performance of four prominent members:

i) AdaGrad or the adaptive gradients algorithm is a wonderful solution to the
rigidity of learning rates in Gradient Descent algorithms. It adaptively scales
the learning rate for each dimension. Let us look into the working of AdaGrad.
We consider the sum of squared partial derivatives and use it as a scaling factor
for the learning rate. The scaling is done by dividing the current learning rate by
the square root of the sum of squared partial derivatives until that iteration. A
small value is added to the denominator to avoid division by zero. With the new
step size in hand, the parameter can be updated, and the next iteration can be
performed, and thus, the algorithm continues. AdaGrad has one hyperparame-
ter, α , which denotes the initial step size or learning rate. The set of equations
for AdaGrad is as follows:

αt+1 =
αt√

ε +St+1
(1)

where St denotes the sum of squared partial derivatives at time t. The parameter
of AdaGrad is updated as per the following equation

θt+1 = θt −αt+1∇ f (θt) (2)

ii) RMSProp: A problem with AdaGrad is that the search can become too slow
if the denominator becomes too large, resulting in minimal learning rates for
each dimension or parameter. It could cause the algorithm to stop before the
intended end is reached. RMSProp or Root Mean Square Propagation follows
a central idea of storing the changing average of the squared gradients for each
parameter and then dividing the gradient by the square root of the mean square.
To prevent issues like the ones posed by AdaGrad, RMSProp used an exponen-
tially decaying average to not give as much importance to gradient information
from the extreme past, enabling it to converge rapidly the moment it located a
convex bowl.
The process of updating, while similar to that of AdaGrad, replaces the square
root of the sum of squared gradients with a root mean square(RMS) measure
of the sum of squared gradients up to that iteration. Once the new step size
is calculated, the parameter is updated similarly as followed in AdaGrad. We
note that RMSProp has two hyperparameters, η denoting initial step size or
learning rate, and ρ denoting a measure of momentum. The required relations
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for RMSProp are as follows:

St+1 = ρSt +(1−ρ)(∇ f (θt))
2 (3)

and the updated step size is given by

ηt+1 =
ηt

ε +RMS(St+1)
. (4)

The final parameter is updated as per the following equation

θt+1 = θt −ηt+1∇ f (θt) (5)

iii) AdaDelta is a more robust Adagrad extension that adapts learning rates based
on a moving window of gradient updates rather than accumulating all previ-
ous gradients. AdaDelta continues to learn in this manner even after numerous
updates have been completed. It is designed to boost the optimization process
by typing to reduce the number of iterations. It involves the calculation of a
step size for each parameter of the objective function for every iteration. The
calculation of the learning rate is similar to that of AdaGrad, and the sum of
squared partial derivatives is similar to that of RMSProp. However, there is a
minor change in the form of a decaying moving average of the squared change
to the parameter, δ .
The parameter δ is further updated in successive iterations using the hyperpa-
rameter, ρ , like in RMSProp. The updated delta value calculates the learning
rate in the next iteration. Following this, the change to the parameter is calcu-
lated, and finally, the parameter is updated using the latest value of the change.
AdaDelta has one hyperparameter, ρ-a measure of momentum.
AdaDelta does not require manual setting and tuning of an initial learning rate
like the other algorithms. The updation in the learning rate for AdaDelta is
given by

γt+1 =
ε +

√
δt

ε +
√

St
(6)

where St denotes the decaying moving average of the squared partial derivative.
The intermediate change to the parameter in the current iteration is given by

∆t+1 = γt+1∇ f (θt). (7)

The updated decaying moving average is given by

δt+1 = δt +(1−ρ)∆ 2
t+1. (8)

Finally, the relation for parameter updation is given by

θt+1 = θt −∆t+1. (9)
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iv) AMSGrad: It is a stochastic optimization method designed to address a conver-
gence problem with Gradient Descent and Adam-based optimizers [9]. AMS-
Grad updates the parameters using the maximum of previously squared gradi-
ents rather than the exponential average. It maintains a first and second-moment
vector and a maximum value of the second-moment vector for each parameter
undergoing updation as part of the search process. Initially, it initialized to zero,
and each value undergoes updation as they progress through the respective it-
eration. The first-moment vector employs a hyperparameter, β1, and is updated
using the objective function gradient and β1.
The second-moment vector undergoes a similar updation but uses the square
of the gradient and a new hyperparameter, β2. The maximum value of the
second-moment vector is computed, and the parameter is updated using the
first-moment vector, the maximum of the second-moment vector, the initial
step size, or the learning rate. AMSGrad has three hyperparameters, ζ -initial
step size or learning rate, β1-decay factor for the first-moment vector, and β2-
decay factor for the second moment vector. The first-moment vector is given
by

m(t) = β1(t)m(t −1)+(1−β1(t))∇ f (θ(t −1)). (10)

The second-moment vector is given by

v(t) = β2(t)v(t −1)+(1−β2(t))(∇ f (θ(t −1)))2. (11)

The maximum of the second-moment parameter vector is given by

v̂(t) = max{v̂(t −1),v(t)} (12)

and the final updated parameter is given by

θt+1 = θt −
ζtm(t)√

v̂(t)
. (13)

5 Learning Schedule

We have used cosine annealing [7] to study the behavior of various optimization
algorithms discussed in subsection 4. Cosine Annealing is a type of learning rate
schedule that has the effect of starting with a high learning rate and rapidly decreas-
ing to a low value before rapidly increasing again. It is done in coherence with the
fact that as an algorithm approaches a particular minimum, it needs to take smaller
steps as the scope narrows rapidly. The cosine function, a decreasing function, offers
a unique opportunity to tune a parameter accordingly. The resetting of the learning
rate acts as a simulated restart of the learning process, and the use of good weights
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as the restart’s starting point is referred to as a ”warm restart,” as opposed to a ”cold
restart,” which may use a new set of small random numbers as a starting point.

Cosine Annealing requires specific values as input for the update process. Such
an update enabled a highly successful implementation of previously mentioned al-
gorithms, which needed to perform satisfactorily on datasets created with certain
distributions in mind. The learning schedule as per the cosine annealing [7] is given
by

η = ηmin +
1
2
(ηmax −ηmin)

(
1+ cos

(
Tcur

T
π

))
(14)

where ηmin and ηmax are ranges for learning rate, and Tcur accounts for how many
iterations have been performed since the last restart, and T is the total number of
iterations.

6 Evaluation Metrics

As mentioned in the data section, we collected error data in Euclidean distance from
the origin, which is the minimum of our circular loss function. For each of the five
hundred points in every distribution, Euclidean error data were collected for five
hundred iterations for each of AdaGrad, RMSProp, AdaDelta, and AMSGrad. The
error data for each algorithm was stored in a NumPy array considering ease of access
and management. Equipped with the above data, we computed the average error of
each algorithm for every single one of the five hundred data points.

Next, we equipped each of the four algorithms with cosine annealing for each
hyperparameter (as stated above) and again computed the error norms for all data
points. We derived meaningful conclusions from the data and plots based on the ob-
served results and careful comparative analysis. All plots were created using ’mat-
plotlib’ in Python.

7 Results and Discussion

This section presents the findings from the experiment. We evaluate the perfor-
mances of AdaGrad, RMSProp, AdaDelta, and AMSGrad with and without the in-
corporation of cosine annealing for all involved hyperparameters. The main idea
behind introducing cosine annealing is to improve algorithm performance by reduc-
ing the number of iterations before convergence to a minimum.

Now we look at the respective performances of the four algorithms on the fol-
lowing data distributions

1. Multivariate Gaussian Case - 1 is included in the figures 1-2
2. Multivariate Gaussian Case - 2 is included in the figures 3-4
3. Mixed Case - 2 is included in the figures 5-6
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Fig. 1 Plot of Average Sum of Squared Error vs. Iteration for Case-1 of Multivariate Gaussian
Data
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Fig. 2 Plot of Average Sum of Squared Error vs Iteration for Case-1 of Multivariate Gaussian Data
with Cosine Annealing

Owing to the limited availability of GPU resources, we limited the data size to
five hundred samples per data distribution and five hundred iterations per data point.
Observing the algorithm’s performance over much larger datasets that would strain
the GPU would give a better idea of their feasibility.

The limited number of mixed distributions considered is also a potential improve-
ment where multiple other distributions can also be factored in to observe and decide
on the usage of the algorithms. Domain-specific knowledge would aid in creating
mixed distribution data, which would be immensely helpful in areas involving noise
modeling for image and signal processing tasks.
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Fig. 3 Plot of Average Sum of Squared Error vs. Iteration for Case-2 of Multivariate Gaussian
Data
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Fig. 4 Plot of Average Sum of Squared Error vs Iteration for Case-2 of Multivariate Gaussian Data
with Cosine Annealing

The study of recurrent data distribution types in domain-specific areas is another
area with scope for improvement. It would make conclusions derived from those
results tailormade for the respective domain.

As seen in case-1 of the multivariate gaussian data distribution, before cosine
annealing is performed, AMSGrad outperforms its counterparts, rapidly converging
to a shallow error rate. While the subsequent best algorithms, i.e., AdaGrad and
RMSProp, take about a hundred iterations to converge, AMSGrad converges almost
instantly. The performance of AdaDelta, however, is inferior.
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Fig. 5 Plot of Average Sum of Squared Error vs. Iteration for Case-2 of Mixed Data
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Fig. 6 Plot of Average Sum of Squared Error vs Iteration for Case-1 of Mixed Data with Cosine
Annealing

The same case is rerun, but now with cosine annealing for all hyperparameters,
giving rise to some incredible observations. RMSProp outperforms all other algo-
rithms, converging almost instantly. AMSGrad holds its ground, with a slightly bet-
ter performance than before. AdaGrad’s performance is almost unchanged, while a
good improvement is seen in the case of AdaDelta, which now converges accurately,
albeit taking about 400 iterations to do so. In case 2 of the multivariate gaussian
data distribution, RMSProp and AdaGrad outperform their counterparts before co-
sine annealing. However, a slight issue is observed in the case of RMSProp, as there
is a very slight increase in its error rate, even after initial convergence. AMSGrad
takes a wayward path before finally converging, with the error rate initially increas-
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ing before falling towards the end towards a decent convergence value. AdaDelta,
while monotonically decreasing, takes about 400 iterations to converge properly to
the minimum.

The same case is rerun but with cosine annealing for all hyperparameters; the ob-
servations are noteworthy for the following reasons. There is a marked improvement
in the performance of all algorithms, with RMSProp and AdaGrad still converging
faster than the rest. The initial error rate for AdaGrad, however, is much smaller
when compared to RMSProp. AMSGrad, while having a near-perfect convergence,
initially dabbles uncertainly, while AdaDelta converges monotonically before reach-
ing the minimum around iteration 200.

The inferences that can be drawn from the above results are that RMSProp and
AdaGrad respond excellently to cosine annealing. However, RMSProp needs to be
adjusted to stop further movement after the minimum is found. Due to its not set-
tling in local minima, however, RMSProp’s biggest strength becomes its biggest
weakness, causing the error rate to fluctuate perennially. Therefore, AdaGrad is the
best choice for all three cases of multivariate gaussian data when cosine annealing
is involved. When cosine annealing is not involved, RMSProp is still the best bet for
case 2, while AMSGrad is a better choice for case 1.

It proves our hypothesis of simultaneous updation of hyperparameters according
to data and time. We look at two cases with a mixture of data distributions to further
verify the hypothesis.

In case of the mixed distributions, we consider a mixture of exponential and
two gaussian data mixtures, as mentioned in the data section. We now look at the
performance of different algorithms before cosine annealing is incorporated. Only
RMSProp reaches the minimum, while all other algorithms fail to do so. However,
the convergence rate is prolonged for RMSProp, with the best minimum reached
around iteration 23.

On incorporating cosine annealing, however, A marked improvement is observed
in all algorithms, with RMSProp being the fastest. However, there is a deviation
from the best minimum to a slightly increased error rate. AdaGrad, AMSGrad,
and AdaDelta converge to the same minimum, although AdaDelta is considerably
slower, reaching the minimum around iteration 250.

Once again, based on the marked improvement of the algorithms’ performance,
the hypothesis that simultaneous updation of hyperparameters concerning data and
time stands correct.

8 Conclusion

The AdaGrad family of algorithms is an integral part of the optimization process,
thus forming a vital part in Machine Learning and Deep Learning. However, the
performance of each algorithm varies from one data distribution to the other. In
this paper, we have investigated the performance of the AdaGrad family of algo-
rithms on different data distributions, which are representative of data distributions
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most commonly seen in real life. We have observed that with conventional learning
schedules, AMSGrad converges almost instantly, while others do not give a sat-
isfactory performance in the first case of multivariate Gaussian data. The second
case saw RMSProp and AdaGrad outperforming their counterparts. On incorporat-
ing cosine annealing, a marked improvement was observed in the performance of all
algorithms in all cases of data distribution that were considered, thereby confirming
our initial hypothesis that the simultaneous usage of hyperparameter updates in co-
herence with both time and the data distribution would lead to an improvement in
algorithm performance.
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